FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Please note that the following pages contain mark schemes for questions from past papers.
The standard of the mark schemes is variable, depending on what we still have - many are scanned, some are handwritten and some are typed.

The questions are available on a separate document, originally sent with this one.

1. $x \geqslant 1$ and $x-1>6 x-1$

$$
x<0 \text { No values }
$$

[P4 January 2002 Qi 2]

3. (a)

$$
y^{\prime \prime} e^{-x}-2 y^{\prime} e^{-x}+y e^{-x}=1 \Rightarrow y^{\prime \prime}-2 y^{\prime}+y=e^{x} B_{1} A D
$$

(b)

Auxiliary equtim $m^{2}-2 m+1=0, \Rightarrow m=1$ repech Compleantory fretion $e^{x}(A+B x)$

$$
\text { Generd s.tition } y=e^{x}(A+13 x)+\frac{1}{2} x^{2} e^{x}
$$

$$
y^{\prime}=2 \text { at } x=0 \Rightarrow 2=A+B \Rightarrow B=1
$$

$$
x=0, y=1 \Rightarrow A=1 \text { (cso) }
$$

$$
y^{\prime}=e^{x}(A+B x)+B e^{x}+x e^{x}+\frac{1}{2} x^{2} e^{x}
$$

$$
\text { Siectie solution } y=e^{x}\left(1+x+\frac{1}{2} x^{2}\right)
$$

$$
\begin{aligned}
& \begin{array}{c}
y=\frac{1}{2} x^{2} e^{x} \quad y^{\prime} y^{\prime}=\frac{1}{2} x^{2} e^{x}+x \\
y^{\prime \prime}=\frac{1}{2} x^{2} e^{x^{\prime}}+2 x e^{x}+e^{x} \\
y^{\prime \prime} \quad y^{2} x
\end{array} \\
& \begin{array}{l}
y^{\prime \prime}-2 y^{\prime}+y=\frac{1}{2} x^{2} e^{x}+2 x e^{x}+e^{x}-x^{2} e^{x}-2 x e^{x}+\frac{1}{2} \\
\text { OR } y e^{-x}=\frac{1}{2} x^{2}, e^{\prime} e^{-x}-y e^{-x}=x \text { M, BY }
\end{array}
\end{aligned}
$$

5.	$\begin{array}{llll} \hline(x>0) & 2 x^{2}-5 x>3 & \text { or } & 2 x^{2}-5 x=3 \\ & (2 x+1)(x-3), & \text { critical values }-1 / 2 \text { and } 3 \\ & & x>3 \\ \mathrm{x}<0 & 2 x^{2}-5 x<3 & \end{array}$ Using critical value 0 : $-1 / 2<x<0$	$\begin{aligned} & \text { M1 } \\ & \mathrm{A} 1, \mathrm{~A} 1 \\ & \mathrm{~A} 1 \mathrm{ft} \\ & \mathrm{M} 1 \\ & \mathrm{M} 1, \mathrm{~A} 1 \mathrm{ft} \end{aligned}$
Alt.		M1 M1, A1 $\mathrm{A} 1, \mathrm{~A} 1 \mathrm{ft}$ M1, A1 ft (7 marks)

[P4 June 2002 Qn 4]

6. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}+y\left(\frac{\sin x}{\cos x}\right)=\cos ^{2} x$ Int. factor $\mathrm{e}^{\int \tan x \mathrm{dx}}=\mathrm{e}^{-\ln (\cos x)}=\sec X$ Integrate: $y \sec x=\int \cos x d x$ $\begin{gathered} y \sec x=\sin x+C \\ (y=\sin x \cos x+C \cos x) \end{gathered}$	M1 M1, M1 A1	(6)
(b) (c)	When $y=0, \quad \cos x(\sin x+C)=0, \quad \cos x=0$ 2 solutions for this $(x=\pi / 2,3 \pi / 2)$	M1 A1	(2)
(c)	$\begin{aligned} & y=0 \text { at } x=0: C=0: y=\sin x \cos x \\ & (y=1 / 2 \sin 2 x) \end{aligned}$	M1	
	Shape	A1	
	Scales	A1	(3)
			(11 marks)

[P4 June 2002 Qn 7]

9. (a)(i) (ii) (b)	$\begin{array}{\|l\|} \|\|x+(y-2) \mathrm{i}\|=2\| x+(y+\mathrm{i}) \mid \\ \therefore x^{2}+(y-2)^{2}=4\left(x^{2}+(y+1)^{2}\right) \end{array}$ so $3 x^{2}+3 y^{2}+12 y=0 \quad$ any correct from; 3 terms; isw Sketch circle Centre (0,-2) $r=2$ or touches axis $\begin{aligned} w & =3(z-7+11 \mathrm{i}) \\ & =3 z-21+33 \mathrm{i} \end{aligned}$	M1 A1 (2) B1 B1 B1 (3) B1 B1 (2) (7 marks)

[P6 June 2002 Qn 3]

10. (a) (b) (c)	$y \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} ;+2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} ;+\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ marks can be awarded in(b) $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{-3 \frac{\mathrm{~d} y}{\mathrm{~d} x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}}{y} \quad \text { or sensible correct alternative }$ When $x=0 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-2$, and $\quad \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=5$ $\therefore \quad y=1+x-x^{2}+\frac{5}{6} x^{3} \ldots$ Could use for $x=0.2$ but not for $x=50$ as approximation is best at values close to $x=0$	M1 A1; B1;B1 B1 (5) M1A1, A1 ft M1, A1 ft (5) B1 B1 (2) (12 marks)

[P6 June 2002 Qn 4]

11.	ZW $=$	
	$12\left(\cos \frac{\pi}{4} \cos \frac{2 \pi}{3}-\sin \frac{\pi}{4} \sin \frac{2 \pi}{3}\right)+12 \mathrm{i}\left(\sin \frac{\pi}{4} \cos \frac{2 \pi}{3}+\cos \frac{\pi}{4} \sin \frac{2 \pi}{3}\right)$	B1
$=12\left[\cos \frac{11 \pi}{12}+\mathrm{i} \sin \frac{11 \pi}{12}\right]$	M1 A1	
	(3 marks)	

[P4 January 2003 Qn 2]

15.

(a)	$\begin{aligned} & y=\lambda x \cos 3 x \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\lambda \cos 3 x-3 \lambda x \sin 3 x \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-3 \lambda \sin 3 x-3 \lambda \sin 3 x-9 \lambda x \cos 3 x \\ & \therefore-6 \lambda \sin 3 x-9 \lambda x \cos 3 x+9 \lambda x \cos 3 x=-12 \sin 3 x \end{aligned}$		M1 A1 A1
	$\lambda=2$	cso	
(b)	$\lambda^{2}-9=0$		M1
	$\lambda=(\pm) 3 \mathrm{i}$		A1
	$\therefore y=A \sin 3 x+B \cos 3 x$	form	M1
	$\therefore y=A \sin 3 x+B \cos 3 x+2 x \cos 3 x$		A1 ft on λ 's (4)
(c)	$\begin{aligned} & y=1, x=0 \Rightarrow B=1 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 A \cos 3 x-3 B \sin 3 x+2 \cos 3 x-6 x \sin 3 x \end{aligned}$		B1
			M1 A1ft on λ 's
	$2=3 A+2 \Rightarrow A=0$		
	$\therefore y=\cos 3 x+2 x \cos 3 x$		A1 (4)
(d)			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ (2)
			(14 marks)

[P4 January 2003 Qn 7]

[P4 January 2003 Qn 8]

17. (a) \begin{tabular}{rl|l|}

$\frac{r^{2}-(r-1)^{2}}{r^{2}(r-1)^{2}}$	$=\frac{2 r-1}{r^{2}(r-1)^{2}}$
(b)$\sum_{r=2}^{n} \frac{2 r-1}{r^{2}(r-1)^{2}}$ $=\sum_{r=2}^{n} \frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}$ $=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\ldots+\frac{1}{(n-1)^{2}}-\frac{1}{n^{2}}$ $=1-\frac{1}{n^{2}} \quad\left(^{*}\right)$	M1 A1 (2)

\end{tabular}

[P4 June 2003 Qn 1]

18.	Identifying as critical values $-\frac{1}{2}, \frac{2}{3}$ Establishing there are no further critical values Obtaining $2 x^{2}-2 x+2$ or equivalent $\Delta=4-16<0$ Using exactly two critical values to obtain inequalities $-\frac{1}{2}<x<\frac{2}{3}$	B1, B1 M1 A1 M1 A1 (6 marks)
Graphical alt.	Identifying $x=-\frac{1}{2}$ and $x=\frac{2}{3}$ as vertical asymptotes Two rectangular hyperbolae oriented correctly with respect to asymptotes in the correct half-planes. Two correctly drawn curves with no intersections As above	$\begin{aligned} & \text { B1, B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1, A1 } \end{aligned}$

19. (a)	$\begin{array}{ll} \frac{\mathrm{d} t}{\mathrm{~d} x}=2 x & \text { or equivalent } \\ I=\frac{1}{2} \int t \mathrm{e}^{-t} \mathrm{~d} t & \text { complete substitution } \\ =-t \mathrm{e}^{-t} \mathrm{~d} t+\frac{1}{2} \int \mathrm{e}^{-t} \mathrm{~d} t & \\ =-\frac{1}{2} t \mathrm{e}^{-t}-\frac{1}{2} \mathrm{e}^{-t}(+c) \\ =-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \mathrm{e}^{-x^{2}}(+c) \\ \text { I.F. } \left.=\mathrm{e}^{\int \frac{3}{x} \mathrm{~d} x}=x^{3} \quad \text { (or multiplying equation by } x^{2}\right) \\ \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} y\right)=x^{3} \mathrm{e}^{-x^{2}} \quad \text { or } x^{3} y=\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x & \\ \quad x^{3} y=-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \mathrm{e}^{-x^{2}}+\underline{C} \end{array}$	M1 M1 M1 A1 A1 A1 (6) B1 M1 A1ft $\underline{\text { A1 }}$ (4) (10 marks)
Alts (a)	(i) $\operatorname{mark} t=-x^{2}$ similarly (ii) \int $\begin{aligned} & \text { i) } \int x^{2} \cdot\left(x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x \\ & =x^{2}\left(-\frac{1}{2} \mathrm{e}^{-x^{2}}\right)+\frac{1}{2} \int 2 x \cdot \mathrm{e}^{-x^{2}} \mathrm{~d} x \\ & =-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \mathrm{e}^{-x^{2}}(+c) \end{aligned}$ (iii) $u=\mathrm{e}^{-x^{2}}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=-2 x \mathrm{e}^{-x^{2}}$ $\begin{aligned} x^{2}=\ln u \text { hence } I & =\int \frac{1}{2} \ln u \mathrm{~d} u \\ & =\frac{1}{2} u \ln u-\frac{1}{2} \int u \cdot \frac{1}{u} \mathrm{~d} u \\ & =\frac{1}{2} u \ln u-\frac{1}{2} u(+c) \\ & =-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \mathrm{e}^{-x^{2}}(+c) \end{aligned}$ (The result $\int \ln u \mathrm{~d} u=u \ln u-u$ may be quoted, gaining M1 A1 A1 but must be completely correct.)	M1 M1 M1 A1 + A1 M1 A1 (6) M1 M1 M1 A1 A1 A1 (6)

[P4 June 2003 Qn 6]

[P4 June 2003 Qn 7]

21. (a)	$\begin{aligned} & y^{\prime}=2 k t \cdot \mathrm{e}^{3 t}+3 k t^{2} \mathrm{e}^{3 t} \\ & y^{\prime \prime}=2 k \mathrm{e}^{3 t}+12 k t \mathrm{e}^{3 t}+9 t^{2} \mathrm{e}^{3 t} \\ & \text { substituting } \quad 2 k+12 k t+9 k t^{2}-12 k t-18 \\ & \quad k=2 \end{aligned}$	use of product rule product rule, twice $9 k t^{2}=4$	M1 M1 M1 A1 (4)
(b)	$\begin{array}{\|ccc} \hline \text { Aux. eqn. (if used) } & (m-3)^{2}=0 & m=3 \text {, repeated } \\ y_{\text {C.F. }}=(A+B t) \mathrm{e}^{3 t} & \quad \text { M1 required form (allow just written down) } \end{array}$		M1 A1 A1 ft (3)
(c)	$\begin{aligned} & t=0, y=3 \Rightarrow A=3 \\ & y^{\prime}=B \mathrm{e}^{3 t}+3(A+B t) \mathrm{e}^{3 t}+4 t \mathrm{e}^{3 t}+6 t^{2} \mathrm{e}^{3 t} \\ & y^{\prime}=0, t=0 \Rightarrow 1=B+3 A \Rightarrow B=-8 \end{aligned}$		B1
			M1
			M1
	$y=\left(3-8 t+2 t^{2}\right) \mathrm{e}^{3 t}$		A1
			(4)
(d)		\cup shape crossing + ve x-axis	B1
		$\frac{1}{2}, 1$	B1
	$y^{\prime}=(-3+4 t) \mathrm{e}^{3 t}+3\left(1-3 t+2 t^{2}\right) \mathrm{e}^{3 t}=0$		M1
	$t=\frac{5}{6}$	awrt-1.35	A1
	$y=-\frac{1}{9} \mathrm{e}^{2.5} \quad(\approx-1.35)$		A1 (5)

22.

[P6 June 2003 Qn 4]
23. (a) $(\cos \theta+\mathrm{i} \sin \theta)^{5}=\cos 5 \theta+\mathrm{i} \sin 5 \theta$
$(\cos \theta+\mathrm{i} \sin \theta)^{5}=\cos ^{5} \theta+5 \cos ^{4} \theta(\mathrm{i} \sin \theta)+10 \cos ^{3} \theta(\mathrm{i} \sin \theta)^{2}$
$+10 \cos ^{2} \theta(\mathrm{i} \sin \theta)^{3}+5 \cos \theta(\mathrm{i} \sin \theta)^{4}+(\mathrm{i} \sin \theta)^{5}$

$$
\begin{array}{ll}
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta & \mathrm{M} 1 \\
=\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right) & \mathrm{M} 1 \\
=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \quad(*) & \text { A1 cso }
\end{array}
$$

(b) $\cos 5 \theta=-1$ (or 1 , or 0$)$
$5 \theta=(2 n \pm 1) 180^{\circ} \Rightarrow \theta=(2 n \pm 1) 36^{\circ}$
$x=\cos \theta=-1,-0.309, \quad 0.809$
[P6 June 2003 Qn 5]

[P4 January 2004 Qn 1]
25.

(a)	$I F=\mathrm{e}^{\int 1+\frac{3}{x} \mathrm{dx}}$	must see	M1	
	$=\mathrm{e}^{x+3 \ln x}$		A1	
	$=e^{x} e^{\ln x^{3}}$			
	$=x^{3} \mathrm{e}^{x}$		A1	(3)
(b)	$\begin{aligned} x^{3} \mathrm{e}^{x} y & =\int x^{3} \mathrm{e}^{x} \frac{1}{x^{2}} \mathrm{~d} x \\ & =\int x \mathrm{e}^{x} \mathrm{~d} x \\ & =x \mathrm{e}^{x}-\mathrm{e}^{x}+c \end{aligned}$		M1	
		\int by parts	M1 A1	
	$y=\frac{1}{x^{2}}-\frac{1}{x^{3}}+\frac{c}{x^{3}} \mathrm{e}^{-x}$	o.e.	A1	(4)
(c)	$\mathrm{I}=c \mathrm{e}^{-1} \quad \therefore c=\mathrm{e}^{1}$	0.171 or better	M1	
	$y=\frac{1}{4}-\frac{1}{8}+\frac{\mathrm{e} \cdot \mathrm{e}^{-2}}{8}$		M1	
	$=\frac{1}{8}\left(1+\mathrm{e}^{-1}\right)$		A1	(3)
	or $=0.171$			
				(10 marks)

[P4 January 2004 Qn4]

26. (a) (b) (c)	$\begin{array}{lrl} 6-2 x=(x-2)(x-4) & \text { and } & -6+2 x=(x-2)(x-4) \\ x^{2}-4 x+2=0 & & x^{2}-8 x+14=0 \\ x=\frac{4 \pm \sqrt{16-8}}{2} & x=\frac{8 \pm \sqrt{64-56}}{2} \\ =2-\sqrt{2} & & =4-\sqrt{ } 2 \\ 2-\sqrt{ } 2<x<4-\sqrt{ } 2 & \end{array}$	Line crosses axes Curve shape Axes contacts 6, 8, 3 Cusps at 2 and 4 either	B1 B1 B1 B1 (4) M1, M1 M1 A1, A1 \quad (5) M1, A1 (2) \quad (11 marks)

[P4 January 2004 Qn5]
27.

28.

[P4 January 2004 Qn 7]

29.	Solves $x^{2}-2=2 x$ by valid method	
	Obtains $x=1 \pm \sqrt{3}$ or equivalent (may only obtain relevant root if graph Solves $2-x^{2}=2 x$ Obtains $x=-1 \pm \sqrt{3}$ Rejects two of these roots and obtains (or uses graph and obtains) $x>1+\sqrt{3}, \quad x<-1+\sqrt{3}$ Special case: Squares both sides to obtain quadratic in x^{2} and solve to obtain $x^{2}=4 \pm 2 \sqrt{3}$ Obtains $x=1 \pm \sqrt{3}$ or $x=-1 \pm \sqrt{3}$ Last three marks as before.	A1 M1 A1 dM1 A1, A1 (7) M1 A1 M1A1 dM1A1A1 (7)

[P4 June 2004 Qn 4]

[P4 June 2004 Qn 6]

- 31. (a)	Auxiliary equation: $m^{2}+2 m+2=0 \rightarrow m=-1 \pm i$	M1
	Complementary Function is $y=e^{-t}(A \cos t+B \sin t)$	M1A1
	Particular Integral is $y=\lambda e^{-t}$, with $y^{\prime}=-\lambda e^{-t}$, and $y^{\prime \prime}=\lambda e^{-t}$	M1
	$\therefore(\lambda-2 \lambda+2 \lambda) e^{-t}=2 e^{-t} \rightarrow \lambda=2$	A1
	$\therefore y=e^{-t}(A \cos t+B \sin t+2)$	B1 (6)
(b)	Puts $1=A+2$ and solves to obtain $A=-1$	M1,
	$y^{\prime}=e^{-t}(-A \sin t+B \cos t)-e^{-t}(A \cos t+B \sin t+2)$	M1 A1ft
	Puts $1=B-A-2$ and uses value for A to obtain B	
	$\mathrm{B}=2$	A1eso
	$\therefore y=e^{-t}(2 \sin t-\cos t+2)$	A1cso
		(6)

32.

$$
\begin{aligned}
& \text { (a) } \\
& 3 a(1-\cos \theta)=a(1+\cos \theta) \\
& 2 a=4 a \cos \theta \rightarrow \cos \theta=\frac{1}{2} \quad \therefore \theta=\frac{\pi}{3} \text { or }-\frac{\pi}{3} \\
& r=\frac{3 a}{2} \\
& \text { [Co-ordinates of points are } \left.\left(\frac{3 a}{2}, \frac{\pi}{3}\right) \text { and }\left(\frac{3 a}{2},-\frac{\pi}{3}\right)\right] \\
& \text { (b) } A B=2 r \sin \theta=\frac{3 a \sqrt{3}}{2} \\
& \text { (c) } \\
& \text { Area }=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2} r^{2} d \theta \\
& =\frac{1}{2} \int\left[a^{2}(1+\cos \theta)^{2}-9 a^{2}(1-\cos \theta)^{2}\right] d \theta \\
& =\frac{a^{2}}{2} \int\left[1+2 \cos \theta+\cos ^{2} \theta-9\left(1-2 \cos \theta+\cos ^{2} \theta\right)\right] d \theta \\
& =\frac{a^{2}}{2} \int\left[-8+20 \cos \theta-8 \cos ^{2} \theta\right] d \theta \\
& =\mathrm{k}[-8 \theta+20 \sin \theta \ldots \\
& \ldots . .-2 \sin 2 \theta-4 \theta] \\
& \text { Uses limits } \frac{\pi}{3} \text { and }-\frac{\pi}{3} \text { correctly or uses twice smalier area and uses limits } \frac{\pi}{3} \\
& \text { and } 0 \text { correctly.(Need not see } 0 \text { substituted) } \\
& =a^{2}[-4 \pi+10 \sqrt{3}-\sqrt{3}] \text { or }=a^{2}[-4 \pi+9 \sqrt{3}] \text { or } 3.022 a^{2} \\
& \text { (d) } \\
& 3 a \frac{\sqrt{3}}{2}=4.5 \rightarrow a=\sqrt{3} \\
& \therefore \text { Area }=3[9 \sqrt{3}-4 \pi],=9.07 \mathrm{~cm}^{2}
\end{aligned}
$$

M1

M1
A1 A1

M1A1

M1 M1

B1

B1
M1

A1

B1

M1, A1
(4)
(2)
(7)
(3)
[P4 June 2004 Qn 8]
33. (a) $\mathrm{f}^{\prime}(x)=\sec ^{2} x \quad \mathrm{f}^{\prime \prime}(x)=2 \sec x(\sec x \tan x) \quad$ (or equiv.) \quad M1 A1

$$
\mathrm{f}^{\prime \prime \prime}(x)=2 \sec ^{2} x\left(\sec ^{2} x\right)+2 \tan x\left(2 \sec ^{2} x \tan x\right) \quad \text { (or equiv.) } \quad \mathrm{A} 1 \text { (3) }
$$

$$
\left(2 \sec ^{2} x+6 \sec ^{2} x \tan ^{2} x\right)
$$

$$
\left(2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x\right),\left(6 \sec ^{4} x-4 \sec ^{2} x\right),\left(2+8 \tan ^{2} x+6 \tan ^{4} x\right)
$$

(b) $\tan \frac{\pi}{4}=1$ or $\sec \frac{\pi}{4}=\sqrt{2}$
$(1,2,4,16)$
$\tan x=\mathrm{f}\left(\frac{\pi}{4}\right)+\left(x-\frac{\pi}{4}\right) \mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)+\frac{1}{2}\left(x-\frac{\pi}{4}\right)^{2} \mathrm{f}^{\prime \prime}\left(\frac{\pi}{4}\right)+\frac{1}{6}\left(x-\frac{\pi}{4}\right)^{3} \mathrm{f}^{\prime \prime \prime}\left(\frac{\pi}{4}\right)$ $=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3} \quad$ (Allow equiv. fractions
(c) $x=\frac{3 \pi}{10}$, so use $\left(\frac{3 \pi}{10}-\frac{\pi}{4}\right) \quad\left(=\frac{\pi}{20}\right)$

$$
\tan \frac{3 \pi}{10} \approx 1+\frac{\pi}{10}+\left(2 \times \frac{\pi^{2}}{400}\right)+\left(\frac{8}{3} \times \frac{\pi^{3}}{8000}\right)=1+\frac{\pi}{10}+\frac{\pi^{2}}{200}+\frac{\pi^{3}}{3000}
$$

(*) A1(cso) (2)
34. (a) $n=1: \frac{\mathrm{d}}{\mathrm{d} x}\left(\mathrm{e}^{x} \cos x\right)=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x \quad$ (Use of product rule) M1

$$
\begin{aligned}
& \cos \left(x+\frac{\pi}{4}\right)=\cos x \cos \frac{\pi}{4}-\sin x \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}(\cos x-\sin x) \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} \cos x\right)=2^{\frac{1}{2}} \mathrm{e}^{x} \cos \left(x+\frac{\pi}{4}\right) \quad \text { True for } n=1 \quad \text { (cso + comment) }
\end{aligned}
$$

Suppose true for $n=k$.

$$
\begin{aligned}
& {\left[\frac{\mathrm{d}^{\mathrm{k}+1}}{\mathrm{~d} x^{k+1}}\left(\mathrm{e}^{x} \cos x\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} x}\left(2^{\frac{1}{2} k} \mathrm{e}^{x} \cos \left(x+\frac{k \pi}{4}\right)\right)} \\
& =2^{\frac{1}{2}}\left[\mathrm{e}^{x} \cos \left(x+\frac{k \pi}{4}\right)-\mathrm{e}^{x} \sin \left(x+\frac{k \pi}{4}\right)\right] \\
& =2^{\frac{1}{2} k} \mathrm{e}^{x} \sqrt{2} \cos \left(x+\frac{k \pi}{4}+\frac{\pi}{4}\right)=2^{\frac{1}{2}(k+1)} \mathrm{e}^{x} \cos \left(x+(k+1) \frac{\pi}{4}\right)
\end{aligned}
$$

\therefore True for $n=k+1$, so true (by induction) for all n. (≥ 1)
(b) $\quad 1+\left(\sqrt{2} \cos \frac{\pi}{4}\right) x+\frac{1}{2}\left(2 \cos \frac{\pi}{2}\right) x^{2}+\frac{1}{6}\left(2 \sqrt{2} \cos \frac{3 \pi}{4}\right) x^{3}+\frac{1}{24}(4 \cos \pi) x^{4}$
(1)
(0)
(-2)
(-4)
$\mathrm{e}^{x} \cos x=1+x-\frac{1}{3} x^{3}-\frac{1}{6} x^{4} \quad$ (or equiv. fractions)
A2 $(1,0)$
35. (a) $\quad \arg z=\frac{\pi}{4} \quad \Rightarrow \quad z=\lambda+\lambda i \quad$ (or putting x and y equal at some stage) \quad B1 $w=\frac{(\lambda+1)+\lambda \mathrm{i}}{\lambda+(\lambda+1) \mathrm{i}}$, and attempt modulus of numerator or denominator. M1 (Could still be in terms of x and y) $|(\lambda+1)+\lambda \mathrm{i}|=|\lambda+(\lambda+1) \mathrm{i}|=\sqrt{(\lambda+1)^{2}+\lambda^{2}}, \quad \therefore|w|=1\left(^{*}\right) \quad$ A1, A1cso (4)
(b) $\quad w=\frac{z+1}{z+\mathrm{i}} \Rightarrow z w+w \mathrm{i}=z+1 \quad \Rightarrow \quad z=\frac{1-w \mathrm{i}}{w-1}$
$|z|=1 \quad \Rightarrow \quad|1-w i|=|w-1|$
For $w=a+\mathrm{i} b, \quad|(1+b)-a \mathrm{i}|=|(a-1)+\mathrm{i} b|$
$\sqrt{(1+b)^{2}+a^{2}}=\sqrt{(a-1)^{2}+b^{2}}$
$b=-a \quad$ Image is (line) $y=-x$
A1
(6)
(c)

B1 B1
(2)
(d) $z=i \quad \operatorname{marked}(P)$ on z-plane sketch.

B1
$z=\mathrm{i} \quad \Rightarrow \quad w=\frac{1+\mathrm{i}}{2 \mathrm{i}}=\frac{\mathrm{i}-1}{-2}=\frac{1}{2}-\frac{1}{2} \mathrm{i} \quad$ marked (Q) on w-plane sketch. B1
(2)
[P6 June 2004 Qn 7]

[FP1/P4 January 2005 Qn 1]
37.

$$
\text { IF. }=\mathrm{e}^{\int 2 \cot 2 x d x} ;=\sin 2 x \quad \text { M1A1 }
$$

Multiplying throughout by \mathbf{F}.
$y \times($ IF $)=$ integral of candidate's RHS
M1

$$
=\int 2 \sin ^{2} x \cos x \mathrm{~d} x \quad \text { or } \int-\left(\frac{\cos 3 x-\cos x}{2}\right) \mathrm{d} x
$$

M1
[This M gained when in position to complete integration, dep on M^{*}]

$$
\begin{aligned}
&= \frac{2}{3} \sin ^{3} x(+C) \\
& y=\frac{2 \sin ^{3} x}{3 \sin 2 x}+\frac{C}{\sin 2 x} \\
& \text { or }-\frac{1}{6} \sin 3 x+\frac{1}{2} \sin x+c \\
& 6 \sin 2 x+\frac{\sin x}{2 \sin 2 x}+\frac{c}{\sin 2 x} \text { or equiv. AIV }
\end{aligned}
$$

38.

(a) $\frac{1}{r(r+2)} \equiv \frac{A}{r}+\frac{B}{r+2} \equiv \frac{A(r+2)+B r}{r(r+2)}$ and attempt to find A and B \quad M1

$$
\equiv \frac{1}{2 r}-\frac{1}{2(r+2)}
$$

(b) $\sum \frac{4}{r(r+2)}=2\left[\frac{1}{r}-\frac{1}{r+2}\right]$

$$
\sum_{i}^{n}\left[\frac{1}{r}-\frac{1}{r+2}\right]=\left\{1-\frac{1}{3}\right\}+\left\{\frac{1}{2}-\frac{1}{4}\right\}+\left\{\frac{1}{3}-\frac{1}{5}\right\}+\ldots \ldots .
$$

$$
+\left\{\frac{1}{n-1}-\frac{1}{n+1}\right\}+\left\{\frac{1}{n}-\frac{1}{n+2}\right\}
$$

M1A1
[If A and B incorrect, allow AIV here only, providing still differences]

$$
=\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}
$$

A1

Forming single fraction: $\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{2(n+1)(n+2)}$
M1

Deriving given answer $\frac{n(3 n+5)}{(n+1)(n+2)}$, cso
(c) Using $S(100)-S(49)=\frac{100 \times 305}{101 \times 102}-\frac{49 \times 152}{50 \times 51}$

M1A1
[$=2.96059 \ldots-2.92078 \ldots]$
$=0.0398$ ($4 \mathrm{~d} . \mathrm{p}$.)
A1 (3) [10]
[Allow S(100) - S(50), $(\Rightarrow 0.0383)$ for M1]
39.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \frac{\mathrm{~d} v}{\mathrm{~d} x}+v, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} v}{\mathrm{~d} x}$
[M1 for diff. product, A1 both correct]

$$
\begin{gathered}
\therefore x^{2}\left(x \frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}\right)-2 x\left(x \frac{d v}{d x}+v\right)+\left(2+9 x^{2}\right) v x=x^{5} \\
x^{3} \frac{d^{2} v}{d x^{2}}+2 x^{2} \frac{d v}{d x}-2 x^{2} \frac{d v}{d x}-2 v x+2 v x+9 v x^{3}=x^{5} \\
{\left[x^{3} \frac{\mathrm{~d}^{2} v}{d x^{2}}++9 v x^{3}=x^{5}\right]}
\end{gathered}
$$

Given result: $\quad \frac{\mathrm{d}^{2} v}{d x^{2}}+9 v=x^{2} \quad$ cso
(b) CF: $v=A \sin 3 x+B \cos 3 x \quad$ (may just write it down)

Appropriate form for P1: $v=\lambda x^{2}+\mu \quad$ (or $a x^{2}+b x+c$) M1
Complete method to find λ and $\mu \quad$ M1

$$
v=A \sin 3 x+B \cos 3 x+\frac{1}{9} x^{2}-\frac{2}{81}
$$

[f.t. only on wrong CF]
(c) $\therefore y=A x \sin 3 x+B x \cos 3 x+\frac{1}{9} x^{3}-\frac{2}{81} x$
[f.t for $y=x$ (candidate's $\mathbf{C F}+\mathrm{PI}$), providing two arbitary constants]
(a) For C: Using polar/ cartesian relationships to form Cartesian equation

$$
\text { so } x^{2}+y^{2}=6 x
$$

[Equation in any form: e.g. $(x-3)^{2}+y^{2}=9$ from sketch.

$$
\text { or } \left.\sqrt{x^{2}+y^{2}}=\frac{6 x}{\sqrt{x^{2}+y^{2}}}\right]
$$

For D: $\quad r \cos \left(\frac{\pi}{3}-\theta\right)=3$ and attempt to expand

$$
\frac{x}{2}+\frac{\sqrt{3} y}{2}=3 \quad \text { (any form) }
$$

M1A1 (5)
(b)

B1 passing through pole Straight line B1

Both passing through $(6,0)$
B1
(3)
(c) Polars: Meet where $6 \cos \theta \cos \left(\frac{\pi}{3}-\theta\right)=3$

$$
\begin{aligned}
& \sqrt{3} \sin \theta \cos \theta=\sin ^{2} \theta \\
& \sin \theta=0 \text { or } \tan \theta=\sqrt{3} \quad\left[\theta=0 \text { or } \frac{\pi}{3}\right]
\end{aligned}
$$

$$
\mathbf{M 1}
$$

$$
\pi, 3
$$

Points are $(6,0)$ and $\left(3, \frac{\pi}{3}\right)$
[FP1/P4 January 2005 Qn 7]

[FP1/P4 June 2005 Qn 1]

[FP1/P4 June 2005 Qi 3]

[FP1/P4 June 2005 Qi 6]

44.(a)	$\begin{aligned} 2 m^{2}+5 m+2 & =0 \\ \Rightarrow \quad m & =-\frac{1}{2},-2 \\ \therefore \quad x_{c F} & =A e^{-2 t}+B e^{-\frac{1}{2} t} \end{aligned}$ Particular Integral: $x=p^{t}+q$ $\bar{x}=p, \bar{x}=0$ and sub. $\Rightarrow \quad 5 p+2 q+2 p t=2 t+9 \rightarrow p=1, q=2$ General solution $\quad x=A e^{-2 t}+B e^{-\frac{1}{2} t}+t+2$	$\begin{aligned} & M I \\ & A_{1} \\ & B_{1} \\ & M 1 \\ & A_{1} \\ & A_{1} \int\left(\text { Fms, } P_{i}\right) \end{aligned}$ (6)
(b)	$\begin{aligned} x=3, t=0 \Rightarrow 3 & =A+B+2 \quad(\text { or } A+B=1) \\ \dot{x} & =-2 A e^{-2 t}-\frac{1}{2} B e^{-\frac{1}{2} t}+1 \end{aligned}$ Atterytix $\bar{x}=-1, t=0 \quad \Rightarrow-1=-2 A \quad-\frac{1}{2} B+1 \quad(\text { or } 4 A+B=4)$ Solving $\rightarrow A=1, B=0$ and $x=e^{-2 t}+t+2$	$\begin{aligned} & M 1 \\ & M_{1} \\ & A_{1} \\ & A_{1} \end{aligned}$ (4)
(c)	$\Rightarrow \begin{aligned} \dot{x} & =-2 e^{-2 t}+1=0 \quad \dot{x}=0 \\ t & =\frac{1}{2} \ln 2 \\ \ddot{x} & =4 e^{-2 t}>0(\forall t) \therefore \min \\ \min \quad x & =e^{-\ln 2}+\frac{1}{2} \ln 2+2 \\ & =\frac{1}{2}+\frac{1}{2} \ln 2+2 \\ & =\frac{1}{2}(5+\ln 2) \quad \text { (*) } \end{aligned}$	HI AI MI Alc土e. (4)

45.

(a)

$$
\begin{array}{rll}
4 a(1+\cos \theta)=\frac{3 a}{\cos \theta} & \text { or } & r=4 a\left(1+\frac{3 a}{r}\right) \\
4 \cos ^{2} \theta+4 \cos \theta-3=0 & \text { or } & r^{2}-4 a r-12 a^{2}=0 \\
(2 \cos \theta-1)(2 \cos \theta+3)=0 & \text { or } & (r-6 a)(r+2 a)=0 \\
\cos \theta=\frac{1}{2},\left(\theta=\frac{\pi}{3}\right) & \text { or } & r=6 a
\end{array}
$$

M1

M1
AI

$$
\text { Note } O N=3 a
$$

$$
P Q=2 \times O N \tan \frac{\pi}{6}=6 \sqrt{ } 3 a * \quad \text { cso }
$$

$$
\text { or } \quad P Q=2 \times \sqrt{\left[(6 a)^{2}-(3 a)^{2}\right]=2 \sqrt{ }\left(27 a^{2}\right)=6 \sqrt{ } 3 a * \quad \text { cso } \quad \text { or } \quad \text { or }}
$$

or any complete equivalent
(b) $2 \times \frac{1}{2} \int_{0}^{2 / 3} r^{2} \mathrm{~d} \theta=\ldots \int 16 a^{2}(1+\cos \theta)^{2} \mathrm{~d} \theta$

$$
\begin{aligned}
& =\ldots \int\left(1+2 \cos \theta+\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right) \mathrm{d} \theta \quad \cos ^{2} \theta \rightarrow a \\
& =\ldots\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right] \\
& =16 a^{2}\left[\frac{\pi}{2}+\sqrt{3}+\frac{\sqrt{ } 3}{8}\right] \quad\left(=2 a^{2}[4 \pi+9 \sqrt{3}] \approx 56.3 a^{2}\right)
\end{aligned}
$$

$$
\text { Area of } \triangle P O Q=\frac{1}{2} 6 \sqrt{3} a \times 3 a \text { or } 9 a^{2} \sqrt{3} 4
$$

$$
R=a^{2}(8 \pi+9 \sqrt{ } 3)
$$

uge of their $\frac{\pi}{3}$
M) Al

B. 1

AI 713
[FP1/P4 June 2005 Qn 7]

[FP3/P6 June 2005 Qn 4]

47.	(a) $\quad z^{n}=\mathrm{e}^{\mathrm{i} n \theta}=(\cos n \theta+\mathrm{i} \sin n \theta), \quad z^{-n}=\mathrm{e}^{-\mathrm{in} \theta}=(\cos n \theta-\mathrm{i} \sin n \theta)$	M1
	$\text { Completion (needs to be convincing) } z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta \text { (*)AG }^{n}$	A1 (2)
	(b) $\left(z-\frac{1}{z}\right)^{5}=z^{5}-5 z^{3}+10 z-\frac{10}{z}+\frac{5}{z^{3}}-\frac{1}{z^{5}}$	M1A1
	$=\left(z^{5}-\frac{1}{z^{5}}\right)-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$	
	$(2 \mathrm{i} \sin \theta)^{5}=32 \mathrm{i} \sin ^{5} \theta=2 \mathrm{i} \sin 5 \theta-10 \mathrm{i} \sin 3 \theta+20 \mathrm{i} \sin \theta$	M1A1
	$\Rightarrow \sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)\left({ }^{*}\right) \mathrm{AG}$	A1 (5)
	(c) Finding $\sin ^{5} \theta=1 / 4 \sin \theta$	M1
	$\theta=0, \pi$ (both)	B1
	$\left(\sin ^{4} \theta=1 / 4\right) \quad \Rightarrow \sin \theta= \pm \frac{1}{\sqrt{2}}$	M1
	$\theta=\frac{\pi}{4}, \frac{3 \pi}{4} ; \quad \frac{5 \pi}{4}, \frac{7 \pi}{4}$	A1;A1 (5)
		[12]

[FP3/P6 June 2005 Qn 5]
48.

2 is a 'critical value', e.g. used in solution, or $x=2$ seen as an asymptote
$x^{2}=2 x^{2}-4 x \Rightarrow x^{2}-4 x=0$
$x=0, x=4$
$x<0$
$2<x<4$
M1: An inequality using the critical value 2

B1

M1 A1

M1 A1
(6)

Total 6 marks
49.
(a) $m^{2}+2 m+5=0 \Rightarrow m=-1 \pm 2 \mathrm{i}$
$x=\mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t)$ M: Correct form (needs the two different constants)
(c)
(b) $(1,0) \Rightarrow A=1$
$\dot{x}=-\mathrm{e}^{-t}(A \cos 2 t+B \sin 2 t)+\mathrm{e}^{-t}(-2 A \sin 2 t+2 B \cos 2 t)$ M: Product diff. attempt
With $A=1, \mathrm{e}^{-t}\{\cos 2 t(-1+2 B)+\sin 2 t(-B-2)\}$
$\dot{x}=1, t=0 \quad \Rightarrow \quad 1=-A+2 B$
$B=1 \quad\left(x=\mathrm{e}^{-t}(\cos 2 t+\sin 2 t)\right) \quad \mathrm{M}$: Use value of A to find B.

'Single oscillation' between 0 and π
Decreasing amplitude (dep. on a turning point)
Initially increasing to maximum
Any one correct intercept, whether in terms of π or not: 1 or $\frac{3 \pi}{8}$ or $\frac{7 \pi}{8}$
(Allow degrees: 67.5° or 157.5°) (Allow awrt 0.32π or 1.18 or 2.75)
-
[FP1/ P4 January 2006 Qn 4]
50.

51.
(a)(i) $r^{2} \sin ^{2} \theta=a^{2} \cos 2 \theta \sin ^{2} \theta=a^{2}\left(1-2 \sin ^{2} \theta\right) \sin ^{2} \theta$ $\left(=a^{2}\left(\sin ^{2} \theta-2 \sin ^{4} \theta\right)\right)$
(ii) $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(a^{2}\left(\sin ^{2} \theta-2 \sin ^{4} \theta\right)\right)=a^{2}\left(2 \sin \theta \cos \theta-8 \sin ^{3} \theta \cos \theta\right), \quad=0$
$2=8 \sin ^{2} \theta \quad$ (Proceed to $a \sin ^{2} \theta=b$)
$\sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}, \quad r=\frac{a}{\sqrt{ } 2}$
(b) $\frac{a^{2}}{2} \int \cos 2 \theta \mathrm{~d} \theta=\frac{a^{2}}{4} \sin 2 \theta \quad$ M: Attempt $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$, to get $k \sin 2 \theta$
$[\cdots]_{\pi / 6}^{\pi / 4}=\frac{a^{2}}{4}\left[1-\frac{\sqrt{ } 3}{2}\right]$
M: Using correct limits
$\Delta=\frac{1}{2}\left(\frac{a}{\sqrt{ } 2} \cdot \frac{1}{2}\right) \times\left(\frac{a}{\sqrt{ } 2} \cdot \frac{\sqrt{ } 3}{2}\right)=\frac{\sqrt{ } 3 a^{2}}{16} \quad$ M: Full method for rectangle or triangle
$R=\frac{\sqrt{ } 3 a^{2}}{16}-\frac{a^{2}}{4}\left[1-\frac{\sqrt{ } 3}{2}\right]=\frac{a^{2}}{16}(3 \sqrt{ } 3-4)$ M: Subtracting, either way round $\left({ }^{*}\right)$

B1
(1)

M1 A1
M1 A1, M11

A1, Al cso (6)

M1 A1

M1 A1
dM1 A1 cso (8)

Total 15 marks
[FP1/P4 January 2006 Qn 7]
52.

$$
\begin{aligned}
& \cos \frac{\pi}{2}+\mathrm{i} \sin \frac{\pi}{2} \\
& \cos \frac{\pi}{10}+\mathrm{i} \sin \frac{\pi}{10} \\
& \cos \left(\frac{(4 k+1) \pi}{10}\right)+\mathrm{i} \sin \left(\frac{(4 k+1) \pi}{10}\right), k=2,3,4 \text { (or equiv.) } \\
& {\left[\cos \left(\frac{9 \pi}{10}\right)+\mathrm{i} \sin \left(\frac{9 \pi}{10}\right), \cos \left(\frac{13 \pi}{10}\right)+\mathrm{i} \sin \left(\frac{13 \pi}{10}\right), \cos \left(\frac{17 \pi}{10}\right)+\mathrm{i} \sin \left(\frac{17 \pi}{10}\right)\right]}
\end{aligned}
$$

[Degrees: 18, 90, 162, 234, 306]
53.
(a) Correct method for producing $2^{\text {nd }}$ order differential equation

$$
\begin{aligned}
& \text { e.g. } \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left\{(1+2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}\right\}=\frac{\mathrm{d}}{\mathrm{~d} x}\left\{x+4 y^{2}\right\} \text { attempted } \\
& (1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+8 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { seen }+ \text { conclusion } A G
\end{aligned}
$$

(b) Differentiating again w.r.t. x :

$$
\begin{aligned}
& (1+2 x) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=8 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}-2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \text { or equiv. } \\
& \text { [e.g. }(1+2 x) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=8\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+4(2 y-1) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}($ at $x=0)=1$
Finding $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}($ at $x=0) \quad(=3)$
Finding $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$, at $x=0 ;=8 \quad$ [A1 f.t. is on part (c) values only]

$$
y=\frac{1}{2}+x+\frac{3}{2} x^{2}+\frac{4}{3} x^{3}+\ldots
$$

[Alternative (c):
Polynomial for y : $y=1 / 2+a x+b x^{2}+c x^{3}+\ldots$
In given d.e.:
$(1+2 x)\left(a+2 b x+3 c x^{2}+\ldots\right) \equiv x+4\left(1 / 2+a x+b x^{2}+c x^{3}+\ldots\right)^{2}$
$\mathrm{a}=1 \quad \mathrm{~B} 1, \quad$ Complete method for other coefficients M1, answer
[FP3/P6 January 2006 Qn 6]
(a) Relating lines and angle (generous)
[angle between $\pm 2 \mathrm{i}$ to P and ± 2 to P]
Angle between correct lines is $\frac{\pi}{2}$
Circle
Selecting correct ("top half") semi-circle .
[If algebraic approach:
M1
Method for finding Cartesian equation
Correct equation, any form, $\quad \Rightarrow x(x+2)+y(y-2)=0$
Sketch: showing circle
Correct circle $\{$ centre $(-1,1)\}$, choosing only "top half"
(b) $|z+1-i|$ is radius; $=\sqrt{2}$
(c) $\mathrm{z}=\frac{2(1+\mathrm{i})-2 \omega}{\omega} \quad\left(=\frac{2(1+\mathrm{i})}{\omega}-2\right)$
$\frac{z-2 \mathrm{i}}{z+2}=\frac{2(1+\mathrm{i})-2(1+\mathrm{i}) \omega}{2(1+\mathrm{i})} \quad(=1-\omega)$
$\operatorname{Arg}(1-\omega)=\frac{\pi}{2}$ is line segment, passing through $(1,0)$

Total 12 marks

Alt ©: $u+i v=\frac{2+2 i}{(x+2)+i y}=\frac{(2 x+2 y+4)+i(x+2-y)}{(x+2)^{2}+y^{2}} \mathrm{M} 1$

$$
x=-1+\sqrt{2} \cos \theta, y=1+\sqrt{2} \sin \theta
$$

$$
\Rightarrow w=\frac{(2 \sqrt{2} \cos \theta+2 \sqrt{2} \sin \theta+4)+i \ldots . .}{(2 \sqrt{2} \cos \theta+2 \sqrt{2} \sin \theta+4)}\{=1+i \mathrm{f}(\theta)\} \quad \mathrm{A} 1,
$$

\Rightarrow part of line $u=1$, show lower "half" of line A1,A1

[FP1 June 2006 Qn 2]

[FP1 June 2006 Qn 3]

[FP1 June 2006 Qn 5]

[FP1 June 2006 Qn 7]

[FP1 June 2006 Qn 8]
60.
(a)

$$
\begin{array}{ll}
\mathrm{f}(x)=\cos 2 x, & \mathrm{f}\left(\frac{\pi}{4}\right)=0 \\
\mathrm{f}^{\prime}(x)=-2 \sin 2 x, & \mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)=-2 \\
\mathrm{f}^{\prime \prime}(x)=-4 \cos 2 x, & \mathrm{f}^{\prime \prime}\left(\frac{\pi}{4}\right)=0 \\
\mathrm{f}^{\prime \prime \prime}(x)=8 \sin 2 x, & \mathrm{f}^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=8 \\
\mathrm{f}^{(\text {iv })}(x)=16 \cos 2 x, & \mathrm{f}^{(\mathrm{ivv}}\left(\frac{\pi}{4}\right)=0 \\
\mathrm{f}^{(v)}(x)=-32 \sin 2 x, & \mathrm{f}^{(\mathrm{v})}\left(\frac{\pi}{4}\right)=-32
\end{array}
$$

$$
\cos 2 x=\mathrm{f}\left(\frac{\pi}{4}\right)+\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)\left(x-\frac{\pi}{4}\right)+\frac{\mathrm{f}^{\prime \prime}\left(\frac{\pi}{4}\right)}{2}\left(x-\frac{\pi}{4}\right)^{2}+\frac{\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)}{3!}\left(x-\frac{\pi}{4}\right)^{3}+\ldots
$$

Three terms are sufficient to establish method

$$
\cos 2 x=-2\left(x-\frac{\pi}{4}\right)+\frac{4}{3}\left(x-\frac{\pi}{4}\right)^{3}-\frac{4}{15}\left(x-\frac{\pi}{4}\right)^{5}+\ldots
$$

(b)

$$
\text { Substitute } x=1 \quad\left(1-\frac{\pi}{4} \approx 0.21460\right)
$$

$$
\begin{aligned}
\cos 2 & =-2\left(1-\frac{\pi}{4}\right)+\frac{4}{3}\left(1-\frac{\pi}{4}\right)^{3}-\frac{4}{15}\left(1-\frac{\pi}{4}\right)^{5}+\ldots \\
& \approx-0.416147
\end{aligned}
$$

61.

(a) In this solution $\cos \theta=c$ and $\sin \theta=s$			
$\cos 5 \theta+\mathrm{i} \sin 5 \theta=(c+\mathrm{is})^{5}$		M1	
	$\left(=c^{5}+5 c^{4}\right.$ is $\left.+10 c^{3}(\mathrm{is})^{2}+10 c^{2}(\text { is })^{3}+5 c(\text { is })^{4}+(\text { is })^{5}\right)$		
\mathfrak{J}	$\sin 5 \theta=5 c^{4} s-10 c^{2} s^{3}+s^{5} \quad$ equate	M1	
	$=5 c^{4} s-10 c^{2}\left(1-c^{2}\right) s+\left(1-c^{2}\right)^{2} s \quad s^{2}=1-c^{2}$	M1	
	$=s\left(16 c^{4}-12 c^{2}+1\right) *$	A1	(5)
	$\sin \theta\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right)+2 \cos ^{2} \theta \sin \theta=0$$\sin \theta=0 \Rightarrow \theta=0$	M1	
		B1	
	$16 c^{4}-10 c^{2}+1=\left(8 c^{2}-1\right)\left(2 c^{2}-1\right)=0$	M1	
	$c= \pm \frac{1}{2 \sqrt{ } 2}, \quad c= \pm \frac{1}{\sqrt{ } 2} \quad$ any two	A1	
	$\theta \approx 1.21,1.93 ; \quad \theta=\frac{\pi}{4}, \frac{3 \pi}{4}$ any two	A1	
	all four	A1	(6)
	accept awrt 0.79, 1.21,1.93,2.36		[11]
Ignore any solutions out of range.			

[FP3 June 2006 Qn 3]

[FP3 June 2006 Qn 6]

63.	Attempt to arrange in correct form $\frac{d y}{d x}+\frac{2}{x} y=\frac{\cos x}{x}$	M1
	$\begin{aligned} & \text { Integrating Factor: }=\mathrm{e}^{\int \frac{2}{x} d x}, \quad\left[\left(=\mathrm{e}^{2 \ln x}=\mathrm{e}^{\ln x^{2}}\right)=x^{2}\right. \\ & {\left[x^{2} \frac{d y}{d x}+2 x y=x \cos x\right. \text { implies M1M1A1] }} \end{aligned}$	M1,A1
	$\therefore \quad x^{2} y=\int x^{2} \cdot \frac{\cos x}{x} d x$ or equiv. $\left[\right.$ I.F. $\mathrm{y}=\int I . F$. (candidate' $s R H S$) $\left.d x\right]$	M1 $\sqrt{ }$
	By Parts: $\quad\left(x^{2} y\right)=x \sin x-\int \sin x d x$	M1
	i.e. $\quad\left(x^{2} y\right)=x \sin x,+\cos x(+c)$	A1, A1cao
	$y=\frac{\sin x}{x}+\frac{\cos x}{x^{2}}+\frac{c}{x^{2}}$	$\mathrm{A} 1 \sqrt{ }$ [8]

64.	Working from RHS: (a) Combining $\frac{1}{r}-\frac{1}{r+1} \quad\left[\frac{1}{r(r+1)}\right]$ Forming single fraction : $\quad \frac{r(r-1)(r+1)+(r+1)-r}{r(r+1)}$ $=\frac{r\left(r^{2}-1\right)+1}{r(r+1)}=\frac{r^{3}-r+1}{r(r+1)}$ AG Note: For A1, must be intermediate step, as shown Working from LHS: (a) $\frac{r\left(r^{2}-1\right)+1}{r(r+1)}=\frac{r(r+1)(r-1)+1}{r(r+1)}=r-1+\frac{1}{r(r+1)}$ Splitting $\frac{1}{r(r+1)}$ into partial fractions Showing $=\frac{r\left(r^{2}-1\right)+1}{r(r+1)}=r-1+\frac{1}{r}-\frac{1}{r+1}$ no incorrect working seen A1	M1 M1 Alcso (3)
	Notes: In first method, second M needs all necessary terms, allowing for sign errors In second method first M is for division: Second method mark is for method shown (allow "cover up" rule stated) If long division, allow reasonable attempt which has remainder constant or linear function of r. Setting $\frac{r\left(r^{2}-1\right)+1}{r(r+1)}=\frac{A}{r}+\frac{B}{r+1}$ is M0 If 3 or 4 constants used in a correct initial statement, M1 for finding 2 constants; M1 for complete method to find remaining constant(s)	

[FP1 Jan 2007 Qn 4]
65.
(a) $[(x>-2)]$: Attempt to solve $x^{2}-1=3(1-x)(x+2)$
$\left[4 x^{2}+3 x-7=0\right]$

$$
x=1, \quad \text { or } \quad-\frac{7}{4}
$$

[($x<-2)]:$ Attempt to solve $x^{2}-1=-3(1-x)(x+2)$
Solving

$$
\begin{aligned}
x+1 & =3 x+6 \quad\left(2 x^{2}+3 x-5=0\right) \\
x & =-\frac{5}{2}
\end{aligned}
$$

Both correct and enclosed
$x<-\frac{5}{2} \quad\{$ Must be for $x<-2$ and only one value \}
66.

$$
\begin{array}{rlr}
\text { (a) } y=x^{-2} & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=-2 x^{-3} \frac{\mathrm{~d} x}{\mathrm{~d} t} & \text { [Use of chain rule; need } \frac{d x}{d t} \text {] } \\
& \Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=-2 x^{-3} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}, & +6 x^{-4}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}
\end{array}
$$

$$
\left(\div \text { given d.e. by } x^{4}\right) \quad \frac{2}{x^{3}} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{6}{x^{4}}\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}=\frac{1}{x^{2}}-3
$$

$$
\text { becomes }\left(-\frac{d^{2} y}{d t^{2}}=y-3\right) \quad \frac{d^{2} y}{d t^{2}}+y=3 \quad \mathbf{A G}
$$

(b) Auxiliary equation: $m^{2}+1=0$ and produce Complementary Function $y=\ldots$

$$
(y)=A \cos t+B \sin t
$$

B1
67.

$$
\begin{aligned}
& \text { (a) } x=r \cos \theta=4 \sin \theta \cos ^{3} \theta \\
& \frac{d x}{d \theta}=4 \cos ^{4} \theta-12 \cos ^{2} \theta \sin ^{2} \theta \quad \text { any correct expression } \\
& \text { Solving } \frac{d x}{d \theta}=0 \quad\left[\frac{d x}{d \theta}=0 \Rightarrow 4 \cos ^{2} \theta\left(\cos ^{2} \theta-3 \sin ^{2} \theta\right)=0\right] \\
& \sin \theta=\frac{1}{2} \text { or } \cos \theta=\frac{\sqrt{3}}{2} \text { or } \tan \theta=\frac{1}{\sqrt{3}} \quad \Rightarrow \theta=\frac{\pi}{6} \\
& r=4 \sin \frac{\pi}{6} \cos ^{2} \frac{\pi}{6}=\frac{3}{2} \\
& \text { (b) } A=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} r^{2} d \theta=\frac{1}{2} \cdot 16 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sin ^{2} \theta \cos ^{4} \theta d \theta \\
& 8 \sin ^{2} \theta \cos ^{4} \theta=2 \cos ^{2} \theta\left(4 \sin ^{2} \theta \cos ^{2} \theta\right)=2 \cos ^{2} \theta \sin ^{2} 2 \theta \\
& =(\cos 2 \theta+1) \sin ^{2} 2 \theta \\
& =\cos 2 \theta \sin ^{2} 2 \theta+\frac{1-\cos 4 \theta}{2}=\text { Answer } \mathrm{AG} \\
& \text { (c) Area }=\left[\frac{1}{6} \sin ^{3} 2 \theta+\frac{\theta}{2}-\frac{\sin 4 \theta}{8}\right]_{\left(\frac{\pi}{6}\right)}^{\left(\frac{\pi}{4}\right)} \quad \text { (ignore limits) } \\
& =\left(\frac{1}{6} \sin ^{3} \frac{\pi}{2}+\frac{\pi}{8}-\frac{\sin \pi}{8}\right)-\left(\frac{1}{6} \sin ^{3} \frac{\pi}{3}+\frac{\pi}{12}-\frac{\sin \frac{2 \pi}{3}}{8}\right) \quad \text { (sub. limits) } \\
& =\left(\frac{1}{6}+\frac{\pi}{8}\right)-\left(\frac{\sqrt{3}}{16}+\frac{\pi}{12}-\frac{\sqrt{3}}{16}\right)=\frac{1}{6},+\frac{\pi}{24} \text { both cao }
\end{aligned}
$$

[FP1 January 2007 Qn 8]
68.
$1 \frac{1}{2}$ and 3 are 'critical values', e.g. used in solution, or both seen as asymptotes
$(x+1)(x-3)=2 x-3 \Rightarrow \quad x(x-4)=0$
$x=4, x=0$
M1: attempt to find at least one other critical value
$0<x<1 \frac{1}{2}, \quad 3<x<4 \quad$ M1: An inequality using $1 \frac{1}{2}$ or 3
M1 A1, A1
M1 A1, A1
[FP1 June 2007 Qn 1]

[FP1 June 2007 Qn 2]

70.	(a) $\begin{align*} & (r+1)^{3}=r^{3}+3 r^{2}+3 r+1 \text { and }(r-1)^{3}=r^{3}-3 r^{2}+3 r-1 \\ & (r+1)^{3}-(r-1)^{3}=6 r^{2}+2 \tag{*} \end{align*}$ (b) $\begin{aligned} & r=1: 2^{3}-0^{3}=6\left(1^{2}\right)+2 \\ & r=2: 3^{3}-1^{3}=6\left(2^{2}\right)+2 \\ & ::::::::: \\ & r=n:(n+1)^{3}-(n-1)^{3}=6 n^{2}+2 \end{aligned}$ M: Differences: at least first, last and one other. Sum: $(n+1)^{3}+n^{3}-1=6 \sum r^{2}+2 n \quad$ M: Attempt to sum at least one side. $\left(6 \sum r^{2}=2 n^{3}+3 n^{2}+n\right)$ $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$ (Intermediate steps are not required) $\left(^{*}\right.$) (c) $\begin{aligned} & \sum_{r=n}^{2 n} r^{2}=\sum_{r=1}^{2 n} r^{2}-\sum_{r=1}^{n-1} r^{2},=\frac{1}{6}(2 n)(2 n+1)(4 n+1)-\frac{1}{6}(n-1) n(2 n-1) \\ & =\frac{1}{6} n\left(\left(16 n^{2}+12 n+2\right)-\left(2 n^{2}-3 n+1\right)\right) \\ & =\frac{1}{6} n(n+1)(14 n+1) \end{aligned}$	M1 Alcso M1 A1 M1 A1 A1cso M1, A1 M1 Al
	(b) $1^{\text {st }} \mathrm{A}$: Requires first, last and one other term correct on both LHS and RHS (but condone 'omissions' if following work is convincing). (c) $1^{\text {st }}$ M: Allow also for $\sum_{r=n}^{2 n} r^{2}=\sum_{r=1}^{2 n} r^{2}-\sum_{r=1}^{n} r^{2}$. $2^{\text {nd }} \mathrm{M}$: Taking out (at some stage) factor $\frac{1}{6} n$, and multiplying out brackets to reach an expression involving n^{2} terms.	

71.	C.F. $m^{2}+3 m+2=0 \quad m=-1$ and $m=-2$		M1	
	$y=A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x}$		A1	(2)
	P.I. $y=c x^{2}+d x+e$		B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 c x+d, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 c \quad 2 c+3(2 c x+d)+2\left(c x^{2}+d x+e\right)=2 x^{2} .$		M1	
	$2 c=2 \quad c=1$	(One correct value)	A1	
	$6 c+2 d=6 \quad d=0$			
	$2 c+3 d+2 e=0 \quad e=-1$	(Other two correct values)	A1	
	General soln: $y=A \mathrm{e}^{-x}+B \mathrm{e}^{-2 x}+x^{2}-1$	(Their C.F. + their P.I.)	A1ft	(5)
	$x=0, y=1: \quad 1=A+B-1$	$(A+B=2)$	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-A \mathrm{e}^{-x}-2 B \mathrm{e}^{-2 x}+2 x, \quad x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1:$	$1=-A-2 B$	M1	
	Solving simultaneously: $A=5$ and $B=-3$		M1 A1	
	Solution: $\quad y=5 \mathrm{e}^{-x}-3 \mathrm{e}^{-2 x}+x^{2}-1$		A1	(5)
				12

[FP1 June 2007 Qn 5]
72.

Shape (closed curve, approx. symmetrical about the initial line, in all 'quadrants' and 'centred' to the right of the pole/origin).

B1
Scale (at least one correct 'intercept' r value... shown on sketch or perhaps seen in a table) (Also allow awrt 3.27 or awrt 6.73).
(b) $y=r \sin \theta=5 \sin \theta+\sqrt{3} \sin \theta \cos \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=5 \cos \theta-\sqrt{3} \sin ^{2} \theta+\sqrt{3} \cos ^{2} \theta \quad(=5 \cos \theta+\sqrt{3} \cos 2 \theta)$
$5 \cos \theta-\sqrt{ } 3\left(1-\cos ^{2} \theta\right)+\sqrt{ } 3 \cos ^{2} \theta=0$
$2 \sqrt{ } 3 \cos ^{2} \theta+5 \cos \theta-\sqrt{ } 3=0$
$(2 \sqrt{ } 3 \cos \theta-1)(\cos \theta+\sqrt{ } 3)=0 \quad \cos \theta=\ldots(0.288 \ldots)$
$\theta=1.28$ and 5.01 (awrt) (Allow ± 1.28 awrt) $\left(\right.$ Also allow $\left.\pm \arccos \frac{1}{2 \sqrt{3}}\right)$ $r=5+\sqrt{3}\left(\frac{1}{2 \sqrt{3}}\right)=\frac{11}{2} \quad$ (Allow awrt 5.50)
(c) $r^{2}=25+10 \sqrt{ } 3 \cos \theta+3 \cos ^{2} \theta$
$\int 25+10 \sqrt{ } 3 \cos \theta+3 \cos ^{2} \theta \mathrm{~d} \theta=\frac{53 \theta}{\frac{5}{2}}+10 \sqrt{ } 3 \sin \theta+3\left(\frac{\sin 2 \theta}{4}\right)$
(ft for integration of $(a+b \cos \theta)$ and $c \cos 2 \theta$ respectively)
$\frac{1}{2}\left[25 \theta+10 \sqrt{ } 3 \sin \theta+\frac{3 \sin 2 \theta}{4}+\frac{3 \theta}{2}\right]_{0}^{2 \pi}=\ldots \ldots$. $=\frac{1}{2}(50 \pi+3 \pi)=\frac{53 \pi}{2}$ or equiv. in terms of π.

Al
(b) $2^{\text {nd }} \mathrm{M}$: Forming a quadratic in $\cos \theta$.
$3^{\text {rd }} \mathrm{M}$: Solving a 3 term quadratic to find a value of $\cos \theta$ (even if called θ).
Special case: Working with $r \cos \theta$ instead of $r \sin \theta$:
$1^{\text {st }}$ M1 for $r \cos \theta=5 \cos \theta+\sqrt{ } 3 \cos ^{2} \theta$
$1^{\text {st }}$ A1 for derivative $-5 \sin \theta-2 \sqrt{ } 3 \sin \theta \cos \theta$, then no further marks.
(c) $1^{\text {st }} \mathrm{M}$: Attempt to integrate at least one term.
$2^{\text {nd }} \mathrm{M}$: Requires use of the $\frac{1}{2}$, correct limits (which could be 0 to 2π, or $-\pi$ to π, or 'double' 0 to π), and subtraction (which could be implied).

$$
\text { 73. (a) } \begin{gathered}
\left(1-x^{2}\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\text { At } x=0, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{\mathrm{d} y}{\mathrm{~d} x}=1
\end{gathered}
$$

(b)

$$
\begin{aligned}
&\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}=-4 \quad \text { Allow a } \\
& y=\mathrm{f}(0)+\mathrm{f}^{\prime}(0) x+\frac{\mathrm{f}^{\prime \prime}(0)}{2} x^{2}+\frac{\mathrm{f}^{\prime \prime \prime}(0)}{6} x^{3}+\ldots \\
&=2-x-2 x^{2},+\frac{1}{6} x^{3}+\ldots
\end{aligned}
$$

Allow anywhere
[FP3 June 2007 Qn 2]
74.
(a) $z^{n}=(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta$

$$
z^{-n}=(\cos \theta+\mathrm{i} \sin \theta)^{-n}=\cos (-n \theta)+\mathrm{i} \sin (-n \theta)=\cos n \theta-\mathrm{i} \sin n \theta
$$

both
Adding

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta *
$$

cso
(b)

$$
\begin{array}{rl|l}
\left(z+\frac{1}{z}\right)^{6} & =z^{6}+6 z^{4}+15 z^{2}+20+15 z^{-2}+6 z^{-4}+z^{-6} & \text { M1 } \\
& =z^{6}+z^{-6}+6\left(z^{4}+z^{-4}\right)+15\left(z^{2}+z^{-2}\right)+20 & \text { M1 } \\
64 \cos ^{6} \theta & =2 \cos 6 \theta+12 \cos 4 \theta+30 \cos 2 \theta+20 & \text { M1 } \\
32 \cos ^{6} \theta & =\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10 & \text { A1, A1 }
\end{array}
$$

$$
(p=1, q=6, r=15, s=10) \quad \text { A1 any }
$$

two correct
(c) $\int \cos ^{6} \theta \mathrm{~d} \theta=\left(\frac{1}{32}\right) \int(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10) \mathrm{d} \theta$

$$
\begin{aligned}
& =\left(\frac{1}{32}\right)\left[\frac{\sin 6 \theta}{6}+\frac{6 \sin 4 \theta}{4}+\frac{15 \sin 2 \theta}{2}+10 \theta\right] \\
{[\ldots .]_{0}^{\frac{\pi}{3}} } & =\frac{1}{32}\left[-\frac{3}{2} \times \frac{\sqrt{ } 3}{2}+\frac{15}{2} \times \frac{\sqrt{ } 3}{2}+\frac{10 \pi}{3}\right]=\frac{5 \pi}{48}+\frac{3 \sqrt{ } 3}{32} \quad \text { or exact }
\end{aligned}
$$

equivalent

[FP3 June 2007 Qn 8]

[FP1 January 2008 Qn 1]

77.(a)		
	Consider $\frac{(x+3)(x+9)-(3 x-5)(x-1)}{(x-1)}$, obtaining $\frac{-2 x^{2}+20 x+22}{(x-1)}$ Factorise to obtain $\frac{-2(x-11)(x+1)}{(x-1)}$.	M1 A1 M1 Al (4)
(b)	Identify $x=1$ and their two other critical values Obtain one inequality as an answer involving at least one of their critical values To obtain $x<-1, \quad 1<x<11$	Blft M1 A1, A1
		(4) [8]

[FP1 January 2008 Qn 3]

[FP1 January 2008 Qn 5]

[FP1 January 2008 Qn 7]

81.

[FP1 June 2008 Qn 4]

82.	(a) $\frac{4}{x}=\frac{x}{2}+3 \quad x^{2}+6 x-8=0 \quad x=\ldots,\left(\frac{-6 \pm \sqrt{68}}{2}\right)$ $-3 \pm \sqrt{17}$ - root not needed $-\frac{4}{x}=\frac{x}{2}+3,$ $x^{2}+6 x+8=0$ $x=-4$ and -2 Three correct solutions (and no extras): $-4,-2,-3+\sqrt{17}$ (b) Line through point on - ve x axis and $+y$ axis Curve 3 Intersections in correct quadrants (c) $-4<x<-2, \quad x>-3+\sqrt{17} \quad$ o.e.	M1, A1 M1, A1 A1 B1 B1 B1 B1, B1
	(a) Alternative using squaring method Square both sides and attempt to find roots $x^{4}+12 x^{3}+36 x^{2}-64=0$ gives $\mathrm{x}=-2$ and $\mathrm{x}=-4$ Obtain quadratic factor, divide find solutions of quadratic and obtain $(-3 \pm \sqrt{17})$ Last mark as before (c) Use of \leq instead of $<$ lose last B1 Extra inequalities lose last B1	M1 A1 M1 A1

[FP1 June 2008 Qn 5]
83.

[FP1 June 2008 Qn 6]
84.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$

$$
\begin{equation*}
\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)=\frac{x}{v x}+\frac{3 v x}{x} \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 v+\frac{1}{v} \tag{*}
\end{equation*}
$$

(b) $\int \frac{v}{1+2 v^{2}} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x$
$\frac{1}{4} \ln \left(1+2 v^{2}\right), \quad=\ln x(+C)$

$$
A x^{4}=1+2 v^{2}
$$

$$
A x^{4}=1+2\left(\frac{y}{x}\right)^{2} \text { so } y=\sqrt{\frac{A x^{6}-x^{2}}{2}} \text { or } y=x \sqrt{\frac{A x^{4}-1}{2}} \text { or } y=x \sqrt{\left(\frac{1}{2} e^{4 \ln x+4 c}-\frac{1}{2}\right)}
$$

$$
\text { (c) } x=1 \text { at } y=3: \quad 3=\sqrt{\frac{A-1}{2}} \quad A=\ldots
$$

$$
y=\sqrt{\frac{19 x^{6}-x^{2}}{2}} \text { or } y=x \sqrt{\frac{19 x^{4}-1}{2}}
$$

M1 A1 (3)

B1

M1
dM1 A1, B1
d M1

M1 A1 (7)

M1

A1
(2) 12
[FP1 June 2008 Qn 7]
85.

[FP1 June 2008 Qn 8]
86. (a)

$$
\begin{aligned}
\left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & =4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+(1-2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}} & =(1-4 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(4 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{aligned}
$$

(b)

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}=3
$$

$$
\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right)_{0}=5
$$

Follow through: $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2$
$y=1+x+\frac{3}{2} x^{2}+\frac{5}{6} x^{3} \ldots$
(c) $x=-0.5, \quad y \approx 1-0.5+0.375-0.104166 \ldots$

$$
\begin{equation*}
=0.77 \text { (} 2 \mathrm{~d} . \mathrm{p} .) \tag{8}
\end{equation*}
$$

[awrt 0.77]

B1

B1ft
M1 A1

M1 Al (4)

B1 (1)
[FP3 June 2008 QN 3]
87. (a)

[FP3 June 2008 Qn 4]
88. (a) $\quad(\cos \theta+\mathrm{i} \sin \theta)^{1}=\cos \theta+\mathrm{i} \sin \theta \quad \therefore$ true for $n=1$

Assume true for $n=k,(\cos \theta+\mathrm{i} \sin \theta)^{k}=\cos k \theta+\mathrm{i} \sin k \theta$
$(\cos \theta+\mathrm{i} \sin \theta)^{k+1}=(\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta)$
$=\cos k \theta \cos \theta-\sin k \theta \sin \theta+\mathrm{i}(\sin k \theta \cos \theta+\cos k \theta \sin \theta)$
(Can be achieved either from the line above or the line below)

$$
=\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta
$$

Requires full justification of $(\cos \theta+\mathrm{i} \sin \theta)^{k+1}=\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta$
(b)
$\cos 5 \theta=\operatorname{Re}\left[(\cos \theta+\mathrm{i} \sin \theta)^{5}\right]$
$=\cos ^{5} \theta+10 \cos ^{3} \theta \mathrm{i}^{2} \sin ^{2} \theta+5 \cos \theta \mathrm{i}^{4} \sin ^{4} \theta$
$=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta$
M1 A1
$=\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2}$
$\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(c)
$\begin{aligned} \frac{\cos 5 \theta}{\cos \theta}=0 \Rightarrow \cos 5 \theta & =0 \\ 5 \theta & =\frac{\pi}{2} \quad \theta=\frac{\pi}{10}\end{aligned}$
$x=2 \cos \theta, \quad x=2 \cos \frac{\pi}{10}$ is a root
Al (3)

